
A FEW SIMPLE GUIDELINES RELATED TO IMAGE CAPTCHAS

Tyler Menezes

University of Washington
Seattle, WA, USA

Darko Kirovski

Microsoft Research
Redmond, WA, USA

ABSTRACT

Human interactive proofs (HIPs) or CAPTCHAs are a com-

mon tool to prevent automated attacks on Web services. Their

prime objective is to detect whether a human is controlling

the actions of a specific client. Although vulnerable to vari-

ous adversarial activities, HIPs are simply a necessity when

minimizing costs of running a Web service.

In this paper, we analyze the existing, widely adopted

practice to assemble a HIP puzzle by warping an image that

encapsulates a sequence of randomly selected, printed let-

ters. We reach the following conclusions. First, on a large

database of fonts, we showcase that various parameterization

techniques such as font variability, are unlikely to maintain

the efficacy of a specific HIP setting. Second, we point to the

fact that it is suboptimal to use all letters of the alphabet as

candidates for constructing HIPs; to that extent, we present

an optimal procedure for letter selection that achieves mini-

mal overall true positive detection rate. Finally, we point to

the fact that under such circumstances humans are not nec-

essarily always worse than computers in solving HIPs — a

belief that has been promoted in related work.

Index Terms— Automated Turing test, CAPTCHA, hu-

man interactive proof.

1. INTRODUCTION

Human Interactive Proofs (HIPs), also frequently known as

CAPTCHAs, are a common tool to prevent automated at-

tacks on Web services [1]. Their prime objective is to detect

whether a human is controlling the actions of a specific client.

Widely adopted practice is to assemble a HIP puzzle by warp-

ing an image that encapsulates a sequence of randomly se-

lected, printed letters. A server prepares such a puzzle and

sends it to the client when it raises suspicion of being adver-

sarial with respect to the normal operation of the Web service.

For example, a HIP is commonly sent to an e-mail client sus-

pected of sending spam, i.e., when it sends a message to a

relatively large number of destinations who have never con-

tacted the sender.

Here the server defends the core of its functionality: Users

expect to reach a service’s functionality with minimal annoy-

ances like complicated HIPs while still having filtered unso-

licited spam. Meanwhile, 88-92% of all e-mail sent on the

Web is spam according to some estimates [2] — this puts

tremendous overload on hosts’ traffic and storage.

To fight HIPs, adversaries usually use one of the following

techniques:

• Character Recognition Solvers Attackers often de-

ploy optical character recognition software (OCR) and

automate the process of solving HIP puzzles using a

collection of computers on the Web or a local network

[3, 4, 5, 6].

• Human Solvers An attacker’s automated attack relays

pose HIPs to human solvers who provide answers (usu-

ally in exchange for free content [11]). “Deployed” hu-

mans in this case may even not know that their HIP

solutions are used to generate spam.

• Blended Attackers may apply OCRs to solve a majority

of HIPs, and send ones with a low certainty to human

solvers. This is similar to the technique used by Google

to digitize books with their ReCAPTCHA service [7].

Spam on the other hand has an economic backbone —

roughly US$300 are provided to spammers for delivering one

million messages to user’s inboxes. To conclude, although

vulnerable to various adversarial activities, HIPs are simply a

necessity when minimizing costs of running a Web service.

1.1. Contributions

In this paper, we focus on analyzing HIP performance under

the OCR attack only. We first issue a guideline to the adver-

sary: regardless of the underlying variability of fonts used to

construct HIPs, a successful strategy to build an attack OCR is

to train it on a set of images where each letter is rendered us-

ing a single carefully selected font. We observed that this ad-

versarial strategy provided detection performance comparable

to the ccase when the OCR is trained using full knowledge of

the font used to generate the HIP. Our strategy clearly sim-

plifies the adversarial complexity in case of HIPs constructed

using variable fonts. As a consequence we speculate that HIP

parameterization via font selection is an ineffective way of

maintaining HIP generators successful.

1892978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

Second, we point to the fact that it is suboptimal to use

all letters of the alphabet as candidates for constructing HIPs;

to that extent, we present a procedure for letter selection that

achieves minimal overall true positive detection rate. In other

words, it is not effective to use letters that are easily disam-

biguated by OCR for constructing HIPs – they only reduce

the overall efficiency of the HIP system.

At last, we note that under such circumstances humans are

not necessarily always worse than computers in solving HIPs

– a belief that has been promoted in related work [12].

2. TRAINING A HIP SOLVER

In this section, we review the practice that benefits the adver-

sary: the process of training her automated HIP solver. Such

a solver typically consists of two components:

• a segmentation engine, whose task is to isolate individ-

ual characters to be decoded, and

• a single character recognition (SCR) engine.

In this paper, we focus on the latter component for two

reasons. First, it is unclear whether a segmentation engine

is truly required if SCR is accurate; by applying a fast SCR

tool on a moving window that follows the trace of the HIP,

maximizing for the overall confidence in detection for all let-

ters, one could envision a solver that can rely only on an SCR

engine. The converse, i.e., a HIP solver designed without an

SCR engine, is certainly less likely to craft. Second, tech-

niques that focus on making segmentation difficult, e.g., [8],

typically affect strongly the readability of HIPs and make sys-

tem valuations more complicated.

For the remainder of this report, we adopt an existing SCR

engine, a convolutional neural network [9] which has been

widely used for document processing and achieves an over-

all error rate of 0.4% on the MNIST database of handwritten

digits. We speculate that this limitation still makes our results

general, as we expect that the phenomena observed and de-

tailed in this report should manifest with other SCR engines.

2.1. Font Parameterization

In our first experiment, we want to understand how font pa-

rameterization affects the SCR engine. The objective is sim-

ple from the HIP designer’s perspective – use a specific font

until it is observed that the adversary has identified how to

solve such HIPs, then switch to another font, forcing the at-

tackers to retrain their SCR – a task that would impose a non-

trivial economic obstacle to the adversary.

For the experiment we chose a subset of fonts available on

a default Windows 7 installation. We excluded fonts which,

after warping, would not be readable by humans, for example

“dingbat” fonts, leaving us with approximately 200 designs.

We used the 26 uppercase alphabetic characters from each

of these fonts due to practical constraints. From each font

and each letter in the training set, we produced 50 variations

of the letter by rotating the letter between 0 and 30 degrees

and applying a global warp, which produced total-character

deformations, and a local warp, that caused localized waves

throughout the strokes of the letter [10]. Because it has pre-

viously been shown that computers perform significantly bet-

ter than humans at high levels of warp [9], we bounded the

warping magnitude so that a quick glance over the resulting

warped letters would reveal an expectation of exceptionally

high recognition rates (97+%) by humans.

Fig. 1. Illustration of results of applying our letter warping

procedure when constructing HIPs.

Of each 50 variations, 30 were placed into a training

database and 20 were placed into a test database. This pro-

vided a training database of roughly the same size used in

previous experiments with this SCR engine [12] while pro-

viding a fully representative test set. The SCR was trained

on the 156,000 character training database and then accuracy

was calculated by applying it across the 104,000 test char-

acters. From this initial experiment, we observed an overall

accuracy similar to that reported in previous reports [12].

≠

Fig. 2. Histogram of SCR performance in two distinct cases:

first when training and testing are done on the same base font,

and second, when the SCR was trained using one then applied

to another font. Each performance result quantifies the aver-

age detection rate across the full English language alphabet.

1893

Figure 2 reveals no surprises as SCRs trained on a specific

font performed substantially better when tested on the same

exact font rather than any other font in the database (81.7%

vs. 77.7%). This performance is reported as an average across

all letters of the English alphabet.

Fig. 3. Per-letter average performance of an SCR trained and

tested on the same font and a unified SCR trained using the

best font for each letter individually and tested across fonts in

database.

Next, we devised a unified SCR by selecting for each let-

ter a font that resulted in best detection performance on all

occurrences of this letter across the entire font database. This

way, the adversary would produce a single SCR engine that

could be used to attack HIPs constructed using arbitrary fonts.

All of that with hope that the performance of the unified SCR

would lag only slightly the performance of SCRs optimized

for specific fonts. Figure 3 illustrates the per-letter perfor-

mance of the two SCR engines averaged of the entire font

database – we recorded difference in performance equal to

only 1% in favor of the tailored SCR – clearly, considering

the universality of the resulting SCR, a success for the adver-

sary. To compare the average performance of these two SCR

engines we present Figure 4.

We conclude that HIP parameterization via continuous

font substitutions, an approach that has been commonly be-

lieved as successful in forcing adversaries spend non-trivial

effort to break HIPs (e.g., labeling and SCR training), is likely

inefficient in lieu of the concept of a unified SCR engine

trained to perform nearly equally well as an SCR tailored to

an arbitrary font.

2.2. Letter Selection

We now turn our attention from the attacker to the party de-

ploying HIPs. Looking at Fig.3, we observe that there is vari-

ance in detection rate across the deployed alphabet. Given

Fig. 4. Average performance of an SCR trained and tested on

the same font and a unified SCR trained using the best font for

each letter individually and tested across the font database.

this, we pose a question whether by removing a carefully se-

lected subset of letters from the considered alphabet we can

increase the overall ambiguity, i.e., improve system perfor-

mance.

A Glyph Confusion Matrix was generated from the OCR

generated as a result of the previous experiment. The matrix

shows the percentage of times the OCR guessed a letter on a

letter-by-letter basis. An ideal OCR would have a vertical line

from the top-left to bottom-right, indicating 100% success at

identifying each glyph and 0% confusion.

In Fig. 5 we can specifically see how certain letters were

very infrequenly confused for the OCR — D, M, N, and S.

We conclude that, in order to increase the overall ambiguity

of the puzzle, these letters should be eliminated.

We perform a simple depth-first search for the permuta-

tion which produced the highest overall error rate:

Alphabet F = f1 . . . f26

error rate = 1−∑
fi

Fpr[fi|fi, F ∗]

Objective
∀F∗ ∈ F : arg max

∑
fi∈f∗ pr[fi|fi]

Selection Method
for (f∗ in F)∑

f∗\F pr[fi|fi] > ε

end

We conclude that any given image-based HIP, such a

1894

Fig. 5. A confusion matrix showing the confusion between

various letters for the OCR.

method can be used to find the most effective set of letters

given a sufficiently large train & test database. Over our

experiments we observed a decline of 4% in accuracy of

the OCR after performing the set reduction, a very signif-

icant improvement for spam-filtering, and quite surprising

considering the simplicity of the method.

3. USER PERFORMANCE

We conducted a user study which replicated the HIPs pre-

sented to the computer, simulating a live production environ-

ment. HIPs were generated as described in the OCR Training

section above. Study participants were asked to identify these

characters in sets of five; the characters were spaced 50 pix-

els apart to eliminate any need for segmentation by the user.

The study was conducted electronically, and participants were

given ten minutes to identify as many of the pairs as possible,

and were scored by the total pairs answered correctly mul-

tiplied by the accuracy. The highest scoring participant was

compensated with an Xbox and Kinect video game console.

Participants were 144 employees and interns at a software

company.

For purposes of statistical significance, we chose to limit

the number of fonts from the user study to one sans-serif font,

one serif font, and one block-serif font, which we felt repre-

sented the majority of fonts used in HIPs.

We found that users performed at an average of 98.4%

accuracy on 4,230 HIP puzzles taking an average of 4.2 sec-

onds to respond to the five-character puzzle presented. We

generated a confusion matrix from the user data, and then

subtracted the confusion matrix previously generated for the

OCR (Fig. 6). This figure allowed us to identify points where

the users performed much better than the machines. We con-

Fig. 6. A confusion matrix showing the difference in confu-

sion between the OCR and humans.

clude that the selection of letters is more significant than the

amount of distortion applied to the HIP puzzle.

4. REFERENCES

[1] L. von Ahn et al. CAPTCHA: Using Hard AI Problems for Security.

Eurocrypt, 2003.

[2] Messaging Anti-Abuse Working Group. Email Metrics Program: The

Network Operators Perspective. Report (no.12) Third and Fourth Quar-

ter 2009, issued March 2010.

[3] G. Moy et al. Distortion estimation techniques in solving visual

CAPTCHAs. IEEE CVPR, 2004.

[4] G. Mori and J. Malik. Recognizing objects in adversarial clutter: Break-

ing a visual CAPTCHA. IEEE CVPR Recognition, 2003.

[5] J. Yan and A. S. El Ahmad. A low-cost attack on a Microsoft

CAPTCHA. ACM CCS, pp.543–554, 2008.

[6] K. Chellapilla and P. Simard. Using machine learning to break visual

human interaction proofs. NIPS, 2004.

[7] L. von Ahn et al. reCAPTCHA: Human-Based Character Recognition

via Web Security Measures. Science, 2008.

[8] K. Chellapilla et al. Designing Human Freiendly Human Interaction

Proofs. ACM Human Factors In Computing Systems, 2005.

[9] P. Simard et al. Best Practice for Convolutional Neural Networks Ap-

plies to Visual Document Analysis, International Conference on Docu-

ment Analysis and Recognition, 2003.

[10] R. Deriche. Fast Algorithms for Low-Level Vision. IEEE PAMI, 1990.

[11] C. Doctorow. Solving and creating CAPTCHAs with free porn. Boing

Boing, 2004.

[12] K. Chellapilla et al. Computers beat Humans at Single Character

Recognition in Reading based Human Interaction Proofs (HIPs). Con-

ference on Email and Anti-Spam, 2005.

1895

